There is not yet a straightforward way to export personal WeChat messages. However if you just need no more than few hundreds of messages for model fine-tuning or few-shot examples, this notebook shows how to create your own chat loader that works on copy-pasted WeChat messages to a list of LangChain messages.
Highly inspired by https://python.langchain.com/docs/integrations/chat_loaders/discord
The process has five steps:
- Open your chat in the WeChat desktop app. Select messages you need by mouse-dragging or right-click. Due to restrictions, you can select up to 100 messages once a time. CMD/Ctrl+Cto copy.
- Create the chat .txt file by pasting selected messages in a file on your local computer.
- Copy the chat loader definition from below to a local file.
- Initialize the WeChatChatLoaderwith the file path pointed to the text file.
- Call loader.load()(orloader.lazy_load()) to perform the conversion.
1. Create message dumpβ
This loader only supports .txt files in the format generated by copying messages in the app to your clipboard and pasting in a file. Below is an example.
%%writefile wechat_chats.txt
ε₯³ζε 2023/09/16 2:51 PM
倩ζ°ζηΉε
η·ζε 2023/09/16 2:51 PM
ηη°ει£θοΌηΆη΄ε―ζ¨ηγε΅εζδΉ¦ζοΌεΊη©ζ
°η§ζ
γ
ε₯³ζε 2023/09/16 3:06 PM
εΏδ»δΉε’
η·ζε 2023/09/16 3:06 PM
δ»ε€©εͺεΉ²ζδΊδΈδ»Άεζ ·ηδΊ
ι£ε°±ζ―ζ³δ½ 
ε₯³ζε 2023/09/16 3:06 PM
[ε¨η»θ‘¨ζ
]
Overwriting wechat_chats.txt
2. Define chat loaderβ
LangChain currently does not support
import logging
import re
from typing import Iterator, List
from langchain_community.chat_loaders import base as chat_loaders
from langchain_core.messages import BaseMessage, HumanMessage
logger = logging.getLogger()
class WeChatChatLoader(chat_loaders.BaseChatLoader):
    def __init__(self, path: str):
        """
        Initialize the Discord chat loader.
        Args:
            path: Path to the exported Discord chat text file.
        """
        self.path = path
        self._message_line_regex = re.compile(
            r"(?P<sender>.+?) (?P<timestamp>\d{4}/\d{2}/\d{2} \d{1,2}:\d{2} (?:AM|PM))",
            # flags=re.DOTALL,
        )
    def _append_message_to_results(
        self,
        results: List,
        current_sender: str,
        current_timestamp: str,
        current_content: List[str],
    ):
        content = "\n".join(current_content).strip()
        # skip non-text messages like stickers, images, etc.
        if not re.match(r"\[.*\]", content):
            results.append(
                HumanMessage(
                    content=content,
                    additional_kwargs={
                        "sender": current_sender,
                        "events": [{"message_time": current_timestamp}],
                    },
                )
            )
        return results
    def _load_single_chat_session_from_txt(
        self, file_path: str
    ) -> chat_loaders.ChatSession:
        """
        Load a single chat session from a text file.
        Args:
            file_path: Path to the text file containing the chat messages.
        Returns:
            A `ChatSession` object containing the loaded chat messages.
        """
        with open(file_path, "r", encoding="utf-8") as file:
            lines = file.readlines()
        results: List[BaseMessage] = []
        current_sender = None
        current_timestamp = None
        current_content = []
        for line in lines:
            if re.match(self._message_line_regex, line):
                if current_sender and current_content:
                    results = self._append_message_to_results(
                        results, current_sender, current_timestamp, current_content
                    )
                current_sender, current_timestamp = re.match(
                    self._message_line_regex, line
                ).groups()
                current_content = []
            else:
                current_content.append(line.strip())
        if current_sender and current_content:
            results = self._append_message_to_results(
                results, current_sender, current_timestamp, current_content
            )
        return chat_loaders.ChatSession(messages=results)
    def lazy_load(self) -> Iterator[chat_loaders.ChatSession]:
        """
        Lazy load the messages from the chat file and yield them in the required format.
        Yields:
            A `ChatSession` object containing the loaded chat messages.
        """
        yield self._load_single_chat_session_from_txt(self.path)
2. Create loaderβ
We will point to the file we just wrote to disk.
loader = WeChatChatLoader(
    path="./wechat_chats.txt",
)
3. Load Messagesβ
Assuming the format is correct, the loader will convert the chats to langchain messages.
from typing import List
from langchain_community.chat_loaders.utils import (
    map_ai_messages,
    merge_chat_runs,
)
from langchain_core.chat_sessions import ChatSession
raw_messages = loader.lazy_load()
# Merge consecutive messages from the same sender into a single message
merged_messages = merge_chat_runs(raw_messages)
# Convert messages from "η·ζε" to AI messages
messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender="η·ζε"))
messages
[{'messages': [HumanMessage(content='倩ζ°ζηΉε', additional_kwargs={'sender': 'ε₯³ζε', 'events': [{'message_time': '2023/09/16 2:51 PM'}]}, example=False),
   AIMessage(content='ηη°ει£θοΌηΆη΄ε―ζ¨ηγε΅εζδΉ¦ζοΌεΊη©ζ
°η§ζ
γ', additional_kwargs={'sender': 'η·ζε', 'events': [{'message_time': '2023/09/16 2:51 PM'}]}, example=False),
   HumanMessage(content='εΏδ»δΉε’', additional_kwargs={'sender': 'ε₯³ζε', 'events': [{'message_time': '2023/09/16 3:06 PM'}]}, example=False),
   AIMessage(content='δ»ε€©εͺεΉ²ζδΊδΈδ»Άεζ ·ηδΊ\nι£ε°±ζ―ζ³δ½ ', additional_kwargs={'sender': 'η·ζε', 'events': [{'message_time': '2023/09/16 3:06 PM'}]}, example=False)]}]
Next Stepsβ
You can then use these messages how you see fit, such as fine-tuning a model, few-shot example selection, or directly make predictions for the next message
from langchain_openai import ChatOpenAI
llm = ChatOpenAI()
for chunk in llm.stream(messages[0]["messages"]):
    print(chunk.content, end="", flush=True)